1.Dereceden bir bilinmeyenli denklemler - Çözümlü Sorular

0 Üye ve 1 Ziyaretçi konuyu incelemekte.

Çevrimdışı Ders Hocası

  • Hocanın Biri
  • *******
  • Join Date: Eki 2016
  • Yer: Hatay
  • 63863
  • +526/-0
  • Cinsiyet: Bay
    • Arif Arslaner
X'in kuvvetinin bir olduğu denklemlerdir.
a ve b gerçel sayılar olmak üzere;
ax¹ + b = 0 biçimindeki denklemler 1.Dereceden bir bilinmeyenli denklemdir.

Örnek:
x + 2 = 0 ise x = ?

Çözüm:
x + 2 = 0
      ∟ eşitliğin karşı tarafına atılır.
      x = - 2

Örnek:
2x + 7 = 11 ise x = ?

Çözüm:
2x + 7 = 11
      2x = 11 - 7
      2x = 4
        x = 2 olur.

Örnek:
3x - 1 = x + 15 ise  x = ?

Çözüm:
3x - 1 = x + 15
3x - x = 15 + 1
     2x = 16
       x = 8 

Örnek:
      4 - x = 12 - 2x ise x = ?

Çözüm:
      4 - x = 12 - 2x
- x + 2 x = 12 - 4
           x = 8

Örnek:
2 (x + 1) + 3 ( 1 - x) = 5x  - 12  ⇒  x = ?

Çözüm:
2 (x + 1) + 3 ( 1 - x) = 5x - 12
        2x + 2 + 3 - 3x = 5x - 12
             2x - 3x - 5x =  - 12 - 2 - 3
                        - 6x =  - 17
                            x = 17 / 6 olur.   

Örnek:
(a - 2) x² + 3x  - 12 = 0 
denklemi 1. dereceden bir bilinmeyenli denklem ise a kaçtır?

Çözüm:
1. dereceden denklemde x² olmamalı.
x² varsa, katsayısı sıfır olmalıdır.
(a - 2) x²  →   ifadesinde a - 2 = 0 olmalıdır.
a - 2 = 0
     a = 2 olur.

Örnek:
(3a - 12) x² + 4x - (b + 1)y = 10 
denklemi 1. dereceden bir bilinmeyenli denklem ise a + b toplamı kaçtır?

Çözüm:
(3a - 12) x²  →  işleminde 3a - 12 = 0 olmalıdır.
3a - 12 = 0
       3a = 12
         a = 4
bir bilinmeyenli denklem olduğu için x veya y kalmalı.
y'yi yok etmek için y'nin katsayısı sıfır olmalı.
(b + 1)y  →  işleminde b + 1 = 0 olmalıdır.
b + 1 = 0
         b = -1
a + b = 4 - 1 = 3 olur.